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Abstract-Numerical studies are made of the flow and heat transfer characteristics of a fully-developed 
pulsating flow in a strongly curved pipe. Emphasis is placed on delineating the effects of the Reynolds 
number, and pulsation amplitude and frequency. By using a toroidal coordinate system, the complete, time- 
dependent incompressible Navier-Stokes equations are formulated. The peripherally-uniform temperature 
condition is imposed on the pipe wall. Particular attention is given to heat transfer properties over 
substantially extended parameter ranges of the Reynolds number Re and the Womersley number Wo. Use 
is made of a well-established numerical solution procedure, with minor amendments. The computed results 
on the flow field are in close agreement with the existing data in the overlapping parameter ranges. The 
spatial distributions of axial and secondary flows are depicted. The time variations of flow structure are 
displayed. The numerical results on the spatial and temporal variations of the thermal field are presented. 
The circumferential profiles of local Nusselt number are plotted at selected instants. When II% is small, 
the time- and space-averaged Nusselt numbers, Em, is lower for a pulsating ilow than for a corresponding 
non-pulsating flow. At moderate and high Wu, however, the difference in !%im between a pulsating and a 

non-pulsating flow is insignificant. 

1. INTRODUCTION 

XN RECENT years, much attention has been directed to 
the Row and heat transfer properties in a strongly- 
curved passageway. One prominent dynamic feature 
is the generation of secondary flow, which results 
mainly from the interplays between pressure gradient, 
centrifugal acceleration and viscous effects. The sec- 
ondary Bows tend to enhance overall convective heat 
transfer in a curved pipe in comparison to that in a 
straight pipe of comparable size. Several published 
accounts [l-3] highlight these significant technical 
issues in basic fluid dynamics. Also, an improved 
understanding of the physical process is vital to tech- 
nological innovations of modern heat-exchangers. 

The majority of previous investigations have dealt 
with steady-state flows. In many practical systems, 
however, the flow oftentimes contains appreciable 
pulsating components. Examples may be found in 
various curved-pipe heat exchangers attached to a 
reciprocating engine, Stirling-engine heat exchangers, 
to name a few 14, 51. The pulsating components may 
be due to the inherent oscillatory characteristics of the 
system, or the pulsation is ~ntentionaily added to the 
flow with a view toward augmenting heat transports. 
These considerations warrant in-depth analyses of 
heat transfer properties of a pulsating flow in a curved 
pipe. 

§Author to whom correspondence should be addressed. 

There has been a considerable body of literature on 
the dynamic aspects of a pulsating flow in a curved 
pipe. Lyne [6] carried out a theoretical investigation 
of a pure oscillating flow in a curved pipe of small 
cu~ature. Two distjnguishable flow regimes were 
identified, and he showed the occurrence of an 
additional pair of secondary circulation in the inviscid 
core. This exhibited features which were different from 
the Dean-type vortices that were well known in non- 
pulsating flows. A theoretical study, under several 
restrictive assumptions, was initiated by Smith [7] for 
a pulsating flow. Some patterns of the secondary flows 
were visualized experimen~lly [g-10]. Talbot and 
Gong 1111, by using a laser Doppler velocimeter to 
measure the secondary flows, experimentally con- 
firmed the existence of a fully-develo~d region down- 
stream of the inlet flow. In this region, the flow vari- 
ables can be thought to be essentially independent of 
the axial position. Lin and Tarbell 1121 computed 
the behavior of pulsating flow in a curved pipe, and 
parallel ex~rimental observations were made, in 
limited parameter ranges, 2.5 ,< Wo < 5.5, Re < 

1100. Hamakiotes and Berger [13, 141 calculated the 
flow patterns in an extended Womersley number 
range (7.5 < Wo < 2.5). A numerical effort was under- 
taken by Tada ef al. [15], in far more enlarged 
parameter spaces (15.07 < De < 264.49, 2.19 
< lVo < 50.0, 0.5 < k < 2.0), which illustrated the 
flow structure in several characteristic regimes. 

A literature survey reveals that research in the heat 
transfer characteristics of a pulsating flow in a curved 
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NOMENCLATURE 

pipe radius 
Dean number, 2Re(a/r,,) ‘v’ 
the pulsating amplitude ratio of axial 
velocity 
the local Nusselt number at the wail 
the cycle- and peripherally-avera~cd 

Nusselt number 
the peripherally-av?eraged Nusselt number 
nondimensional pressure 

dimensional pressure 
the Prandtl number, ~qlri 
radial coordinate in the pipe cross section 
dimensional mean radius of the curved 

region 
the Reynolds number, rtv,,Ta!r 

nondimensional time 
dimensional time 
nondimensional temperature 
dimensional temperature 
nondimensional bulk temperature 

- 

. 
I * * dimensional wall tempcraturc 
!I, I’. 11’ nondimensional velocity components 
N*. I’*, r1.* dimensional velocity components 

rr,Z time-averaged. spatially-mean axial 
velocity 

t& the pulsating axial velocity averaged over 

the cross section 

JVo the Womersley number. rc(ci,;r) ’ ‘. 

Greek symbols 

P the coetlicient of artificial compressibility 
(5 the curvature ratio. 0/f,., 
0 curve angle 
fi thermal diffusivity 
I kinematic viscosity 

i’ density 

; 

pseudo time 
angular coordinate in the pipe cross section 

UJ the frequency of pulsation. 

pipe is meager and incomplete. Simon (‘f rrf. [16] 
employed a perturbation analysis to tackle heat trans- 
fer for very small Dean numbers. Rabadi ri al. 
[I 71, by carrying out numerical calculations, pointed 
out inaccuracies of the above-stated perturbation 
analysis. However, the numerical endeavors of 
Rabadi et rtl. [17] were restricted to the case of one 
specific, relatively low, value of the Dean uumber 
(De = 100.0). 

It is readily recognized that the global patterns of 
flow field and heat transfer properties in a curved pipe 
demonstrate substantial changes in character when 
appreciable magnitudes of pulsations are supcr- 
imposed. The physical process crucially depends on 
several key nondilnensional parameters. In order to 
acquire a systematic knowledge of the underlying 
phenomena, a comprehensive and organized para- 
metric study is required. In the present paper, 
complete numerical solutions are sought to the 

unapproximated. time-dependent Navier-Stokes 

equations for a fully-developed pulsating flow in a 
curved pipe. The validity of the assumption of the 
fully-developed pulsating flow has been ascertained 
by previous experimental studies. For instance. 
Sumida et al. [IO] considered a pipe curvature ratio 
of I /7.6 and a pulsation amplitude of 1 .O. In a similar 
effort, Talbot and Gong [!I] dealt with the case of 
pipe curvature ratio of l/7. and pulsation amplitude 
of 1.0. These prior investigations asserted that the 
pulsating flow attained a high degree of fully 
developed state at some downstream location along 
the axial length of the pipe. Clearly, the assumption 
ofthe fully-developed flow couid become less accurate 
if the pulsation amplitude is very large for a strongly 

curved pipe. However, simulating a fully threc-dimen- 
sional pulsating tlow at the present stage posts a 
prohjb~tive~y expensive undertaking, although such 
endeavors are highly desirable in principle. Further- 
more, the primary mission of the present work is to 
portray the effects of pulsation on the global heat 
transfer properties ; the impacts of the axial variations 
of the How variables constitute an issue of secondary 
importance. In summary, for the values of the pa- 
rameters used in the present account. the assumption 
of the fully-developed state is a reasonable approxi- 
mation, as can be inferred from the results of refs. [IO. 
I I]. It is emphasized here that the ranges of both the 
Womersley number and the Reynolds number are 
enlarged considerably to cover large pulsation ampli- 
tudes and strong curvature ratios. The intention is to 
describe the major features of local as well as averaged 
heat transfer rates in the cross-sectional plane. The 
flow pulsation and the Reynolds number will be two 
principal dynamic effects that can be controlled exter- 
nally. 

The numerical solution methodologies have been 
well established. In the present study, some modi- 
fications were introduced, which made the sat- 
culations more adaptable to a pulsating flow in a 
curved pipe. These amended numerical procedures 
proved to be effective in securing the details of flow 

and thermal fields. 

2. MATHEMATICAL FORMULATION 

In accordance with the problem statement. a pul- 
sating how of an incompressible viscous tluid is main- 
tained in a curved pipe of radius tl. The radius OI 
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FIG. 1. Flow geometry and toroidal coordinate system. 

curvature of the pipe is r,,. All the physical properties 
of the fluid are assumed to be constant (v the kinematic 
viscosity, and K the thermal diffusivity). As was shown 
by Lyne [6] and Rabadi et al. [17], the pulsating flow, 
with the pulsation frequency o, is taken to be fully 
developed both in velocity and thermal fields. Fol- 
lowing the methods used in Soh and Berger [18], a 
toroidal coordinate system (r,&B), with the cor- 
responding velocity components (u, v, w), is suitable 
for the present flow geometry. A schema of the flow 
configuration, with proper geometrical descriptions, 
is shown in Fig. 1. 

The pulsating flow in the pipe is governed by the 
unsteady Navier-Stokes equations. Adopting stan- 
dard notation, these equations, in dimensionless form, 
are expressed as 

&sin4 + S2cos4 
+--- 

rB 
,,(vsin$-ucos$) 

(3) 

a 
(rBuw) + s (Bvw) 

+ drw(u cos 95 -v sin 4) 1 

= -gg+,{A[i(rBf$) 

+;(g)]-$1 

St:+& g(rBuT)+ &(BvT)- s 1 

(4) 

=&A[k(rB:)+$($)]. (5) 

In the above, the nondimensional quantities are 
related to the dimensional counterparts (indicated by 
asterisk) in the following fashion : 

r = r*/a, 

(u, v, w) = (u*, v*, w*gw,*, 

P = P*l(Pw: 2)> 

T = a<Tw* - T*) 
aT* ’ 

‘“ae 

t = cot* (6) 

in which w,* is the time-averaged, spatially-mean axial 
velocity of the mainstream over the cross-sectional 
plane. Compatible with the notion that only a fully- 
developed status is considered [ 171, the spatially-aver- 
aged axial gradient of fluid temperature, d T*/a@, takes 
a constant value. In the present treatise, the wall tem- 
perature T,* is assumed to be independent of time 
and is uniform peripherally. In conformity with the 
aforementioned fully-developed flow assumption, T,* 
also varies linearly in the axial direction. The jus- 
tification of the fully-developed flow was stated pre- 
viously. In particular, the experimental evidence of 
refs. [lo, 1 I] is relevant since the values of the pa- 
rameters of these studies are comparable to those of 
the present work. 

In the nondimensional governing equations (l)- 
(5), relevant dimensionless parameters emerge : 

Re = w,*a/v, the Reynolds number; St = am/w,*, the 
Strouhal number; Pr = V/K, the Prandtl number ; 
6 z a/r,,, the curvature ratio ; and B 3 1 + 6r cos 4. 

From the above definitions, the Dean number 
De = 2Re(a/r,) ‘I’, and the Womersley number 
IV0 E a(o/v) “’ are derived. 

The boundary conditions at the pipe wall are 

u=v=w=o, T= 0. (7) 



Due to the symmetry of pipe gcomctry, only one halt 
of the pipe is considered in the numerical calculations. 
The symmetry conditions at the pipe center plane arc 

1-11 - (II‘ (“7 
I -=- 0. 

C-C/I ?(I, 
: -0. 

?C/) 
(S) 

The pulsating axial velocity. a\craged over the c‘ro\s 
section. is specified as l’ollows : 

ikl’- I +/<cosr (‘1) 

where /\ indicates the nondimensional amplitude 01 

pulsation. Upon integrating the It,-momentum cqua- 
tion (4) over the cross section. the value of the cor- 
responding pressure gradient in the axial direction. 
ip,‘X. can be determined. 

3. NUMERICAL PROCEDURE 

The numerical techniques to solve the governing 
equations have been established by previous authors 
[ 18, 191. In this section, only the highlights of numcri- 

cal procedures will be briefly recapitulated. 

The equations containing the time dcrivativcs. C 
equations (2)-(S). arc rcarrangcd. in vector form. as 

S[(V”. ‘_-V”):A,+V.(vg” ‘V”’ ‘)-_-VP” ’ 

in which V is the velocity vector. AI the time 
increment, and indicts n and n+ I refer to the time 
levels. 

The continuity equation. expressing the divergcnce- 
free vector field, should be satisfied at every time step : The central dif;Eercncing in the staggered grid IICL- 

V.v”” 
= 0 (12) 

To build cffectivc computational schemes. the con- 
cept of pseudo-time. together with the introduction of 
the coefficient of artificial compressibility, is utilized. 
The idea of coefficient of artificial compressibility has 
been put forward in aerodynamic computational 
fields and its advantage has been documented [IX]. 
With the use of these concepts. the time-advancing 

equations can be rewritten, in compact form. as 

and 

c‘H,‘is + (A, + A,,)H + C’ = 0 (13) 

iT:(:z+(M+.V)T+C’= 0 (14) 

where 5 indicates pseudo-time. and 

work is adopted for the advection and diffusion terms. 

The gcncral solution procedures arc similar to those 
expounded in [18]. Minor differences arc that. 111 the 
present formulation, the unsteady terms arc incor- 
poratcd into the source terms. C“ and C”. In order to 
facilitate convergence in pseudo-time T, it I‘actorcd 
AD1 finite-dilTcrencc technique \vas used. This Icad\ 
to triangular matrices Ibr both the I’ and (/I ccluativns. 
which arc amenable to the Thomas algorithm [Xl. 
The geometrical center of‘ the pipe (1. = 0) represents 
:I mathematical singular point. For the treatment of 
the center, the numerical approximation method 01’ 
ref. 1181 was sclectcd. At each time step. the fully 
converged solutions for the velocity fields are obtained 
iirst. and based on these. the temperature field 15 
sccurcd. 

The grid points were typically (20 x 20) for I~LI 
Reynolds numbers, and (24 x 30) for high Reynolds 
numbers. The mesh network was stretched to cluster 
the grid points near the wall. In the actual compu- 
tations. the integration of the governing cquationx 
was performed over a number of pulsation cycles until 
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the periodicity of the results was attained. The com- 

putational time interval At was chosen such that 360 

or 720 time steps, depending on the values of the 

relevant parameters, constituted a pulsation cycle. 
Typically, these imply that the nondimensional time 
interval is 2z/360 or 27~/720. Normally, approximately 
20 iterations were required to reach the prescribed 

accuracy (10m4 in the present study) in the velocity 
and temperature fields at each time level. Usually, 

about 6-10 pulsation cycles were needed for the com- 
puted solution to approach a periodic status ; 
however, at high Womersley numbers Wo, the 

periodicity of solutions was realized after more pul- 
sation cycles were encompassed. The tests of grid- 
convergence and time step sensitivity were performed 

for several exemplary calculations. The results were 
generally satisfactory, providing credence to the use 
of the mesh network and time interval selected in this 

study. 

4. RESULTS AND DISCUSSION 

As stressed previously, this study aims to acquire 
comprehensive flow and heat transfer data over wide 
ranges of the externally specifiable parameters. To 
this end, the two principal parameters were set: the 
Reynolds number, Re = 50, 200, 400, and the 
Womersley number, Wo = 2.5, 5.0, 7.5, 10.0, 15.0, 
and 20.0. These clearly represent vastly extended pa- 
rameter spaces over the prior investigations. In par- 
allel with the preceding numerical examinations [ 13, 
14, 171, discussions will be concentrated for the com- 
putations using the Prandtl number Pr = 0.7, the 
pulsation amplitude k = 1.0, and the pipe curvature 
ratio 6 = l/7. However, additional calculations were 
obtained for Pr = 5.0 and for k = 0.5, which illus- 
trated the effects of Pr and of k. 

4.1. The uelocityjeld 
In the first, it is useful to appreciate the general 

interrelation between the cross sectional area-aver- 
aged axial velocity I@, expressed in (9), and the axial 

pressure gradient ap/iN, which drives the axial flow. 

The results in Fig. 2 are prototypical of the time- 
dependent variations of these two physical quantities. 

The shape of m is assumed to be a simple sinusoidal 
function, shown in Fig. 2(a). When Wo is small (say, 
Wo = 2.5), the axial pressure gradient $/%I is nearly 
in phase with @. This implies that the overall situation 

is akin to a quasi-steady process. The axial velocity 
@’ responds to the instantaneous value of pressure 

gradient when the pulsation frequency is very low. On 
the other limit, when Wo is large, the magnitude of 
3ppiatl is amplified substantially. This finding is con- 
sistent with the earlier reports [13, 141. It is also 

notable that the phase difference between @‘and ap/aO 
approaches 7r/2 at large Wo. As can be deduced from 
the momentum equation (4), at high pulsation fre- 
quencies, the dominant balance is between the 
unsteady term and the axial pressure gradient. The 
above observations on the temporal behavior of I@ 

and ap/aO are in broad agreement with the detailed 
theoretical examinations of the pulsating flow in a 

curved pipe [21]. 
The local distributions of instantaneous axial vel- 

ocity w and the vector plots of secondary flows are 
exhibited in Figs. 3 and 4. The velocity profiles are 
illustrated at four different instants in reference to Fig. 

2(a) : t = 0 and t = K correspond, respectively, to the 
instants of maximum @ and minimum WI; t = 7c/2 
and t = 3z/2 are the respective instants of maximum 

negative dW/‘ldt and maximum positive 8 IF’/&. 
The local profiles of w display considerably different 

patterns, depending on the value of Wo and Re. In 
general, for small Wo, the spatial gradients of $1’ are 
less pronounced near the inner wall than the outer 
wall. However, at large Wo, the spatial variations of 
w near the inner wall are comparable in magnitude 
with those near the outer wall. Furthermore, at large 
Wo, the flow demonstrates rapid spatial variations in 
the wall regions. As illustrated in Fig. 2, the temporal 
fluctuation of axial pressure gradient is substantial 
when the pulsation frequency is large. Due to the 
viscosity effect, the fluid particles in the wall regions 

FIG. 2. 

(4 L (b) L 
Temporal behavior of flow variables. Re = 200, k 

of appia. 

6.0 

0.0. 

-6.0. 

-12.0 

wo=7.5 
wo=2.5 

% 

= 1 .O. (a) p and a@/&, (b) computed results 



aill have smaller inertia than those in the intcrioi- cot-c 

region. C‘onscquently. the tluids near the ~mlls uodd 
respond more readily to the prrvvailing axial prcssurr 

gradient. and this process is mm conspicuous at lai-gc 
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PIG. 5. Plots of isotherms. Re = 50, k = 1 .O, Pr = 0.7. (a) Wo = 2.5, (b) Wo = 20.0. The values of isotherm 
contour lines are, from the outer to the inner wall, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5 and 20.0. 

wTrdrd#dt 

wr dr d4 dt 

The local Nusselt number NM is now defined using the 
bulk temperature i=b as [ 161 

It follows that the peripherally averaged Nusselt 
number aP is 

Nu, = & 
2n 

Nu( 1-t 6 cos 4) d4, 

and the cycle-averaged and peripherally-averaged 
Nusselt number Nu, is 

Nu, = :, 

2n s- NM, dt. 
0 

The temporal and peripheral variations of the local 

Nusselt number Nu are analyzed in Figs. 7-9. A clear 
finding emerges that Nu increases fairly monotonically 
as the peripheral angle C$ moves from 7~ (cor- 
responding to the inner wall) to 0 (corresponding to 
the outer wall). Higher rates of heat transfer in the 
regions near the outer wall are the results of enhanced 
convective activities, with increased axial velocities, 
owing to the curvature effect of a curved pipe. As Re 
increases, the peripheral variations of Nu are more 
pronounced. As indicated in Fig. 9, at a large value 
of Re, the localized heat transfer augmentation near 
the outer wall is substantial. When Wo is low, the 
temporal variations of Nu are generally appreciable, 
and these trends are particuarly noticeable near the 
outer wall. As Wo increases, the temporal changes of 
Nu tend to be small. 

Re-plotting the numerical data, the behavior of Nu, 
is examined in further detail. When Re is low (see Fig. 
10(a)), the magnitudes of temporal variations of Nu, 
are smaller than for high Re (see Fig. 10(b)). The 
overall augmentation of heat transport at higher 
values of Re is discernible in Fig. 10 as well. For a 

t= 0 t= x/2 t= 7T t= 3rr/2 

FIG. 6. Plots of isotherms. Re = 200, k = 1.0, Pr = 0.7. (a) Wo = 2.5, (b) Wo = 20.0. The values of 
isotherm contour lines are, from the outer to the inner wall, 5.0, 10.0, 15.0, 20.0,25.0, 30.0, 35.0 and 40.0. 
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fixed value of Re, the temporal changes of Nu, are far 
more prominent at low values of Wo. Cross-refcr- 
encing the @‘-profile of Fig. 2 and the Nu,-profiles of 
Fig. 10 discloses the phase relations between these two 

physical quantities. When Wo is low, I&’ and IV+ arc 
nearly in phase. However. at large Wo. the phase lag 
between I? and Nu, tends to increase. 

Calculations were performed to gauge the effects of 
the Prandtl number Pr and the magnitude of the 

Nu ’ 
30.0 I 

20.0 1 

10.0 i 

Nil ,i:l; 
20.0 i ;li t=?r/& / 

FIG. 9. The peripheral profiles of Nu. Rr = 400, k = 1.0. 
Pr = 0.7. (a) wo = 2.5. (b) wo = 7,s. 

pulsation amplitude k. Typical results are displayed 
in Fig. I I. As is discernible in Fig. I l(a), the con- 
vcctivc heat transfer, as reflected in Nu,, is cub- 
stantially enhanced for PI = 5.0 in comparison to 
/+ = 0.7. However. the phase lag of Nu, is aflectod 
slightly by the variation in Pr. The impact of /<. as 
displayed in Fig. I l(b). is consistent with the intuition. 
The time evolution of .Nk,, tends to be amplified as i, 
increases. 

Finally. the global heat transport characteristics 
arc best reflected in the behavior of Yu,,,. Figure I? 
summarizes the results of entire numerical con- 
putations. For the purpose of comparisons, the Nus- 
sclt numbers were re-calculated for given values of Rv 
of non-pulsating Rows (by setting h- = 0 in cquutinn 
(9)). These exercises will bring into focus the alter- 
ations in global heat transfer caused by the addition 
of pulsating components. The computed Nu,,, results 
for non-pulsating flows are in close agreement with 
the existing data in the literature [23]. An obvious 

finding that emerges from Fig. 12 is that, at low and 
moderate values of Wo, Nu,, for a pulsating flow tends 
to be lower than that for a non-pulsating flow. and at 
high Wo. not many changes are seen in ‘VU,,, by the 
presence of pulsations. This tendency of decrease in 
global heat transports in a pulsating flow waq also 
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FIG. 10. Temporal variation of peripherally-averaged Nusselt number Nu, with Re. k = 1.0, Pr = 0.7 
(a) Re = 50, (b) Re = 200, (c) Re = 400. 

noted in ref. [ 171 for one specific low value of the Dean 

number. 
The above observations on Nu, need careful 

interpretation. Note that the concept of NU here is 
strictly applicable to the heat transport between the 
pipe wall and the fluid. Oftentimes, the claim of heat 
transfer enhancement by the addition of pulsations, 
as reported in the literature [4, 241, is concerned with 
heat transport between the fluids in the upstream and 
the fluids in the downstream locations. Also, it should 

24.0 

=P 

16.0 
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0.0 
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K 1°.O 

w 5,0 

0.0 
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@) 

FIG. 11. Temporal variation ofperipherally-averaged Nusselt 
number NuP with Pr and k. Re = 200, Wo = 10.0. (a) Effect 

of Pr, k = I .O, (b) effect of k, Pr = 0.7. 
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WO 

FIG. 12. The numerical results of Nu,. k = 1.0, Pr = 0.7. 
The broken lines indicate the values for the corresponding 
non-pulsating flows (k = 0.0 in equation (9)). 0 Re = 50; 

+ Re=200;*Re=400. 

be pointed out that, in the present treatment, a fully- 
developed flow is assumed, and the condition of the 
peripherally-uniform temperature at the pipe wall is 
enforced. 

5. CONCLUSION 

The computed results reveal the flow and thermal 

fields over a wide range of Re, as they are affected by 
pulsations of varying frequencies. The present com- 
putational studies are concerned with the case when 
the pulsation amplitude is substantial and the pipe 
curvature is strong. The results are consistent with the 
preceding flow data of the literature in the overlapping 
parameter ranges. 

The local axial velocity field displays large gradients 
in the wall peripheral area, and the velocity gradients 

are more pronounced near the outer wall. The con- 
centration of axial velocity gradients in the wall 
regions intensifies as the Womersley number Wo 
increases. It is noted that localized reverse flow zones 
appear in the inner wall areas when the mean axial 
speed @‘takes low values. These tendencies become 

more discernible as Re increases. When Wo is low, 
the secondary flows exhibit strong temporal vari- 
ations. The major parts of the secondary flows are seen 
near the peripheral areas, and they are oriented in 
the circumferential direction, moving from the outer 
to inner wall. At high values of Wo, the temporal vari- 
ations of secondary flows are weak. 

Analyses were made of the detailed patterns of iso- 
therms. In general, the temperature gradients are large 
in the peripheral regions, and these are particularly 
noticeable near the outer wall. Concentration of the 
temperature gradients near the peripheral areas is 
more pronounced as Re increases. For a given value 
of Re, the temporal variations of the temperature 
fields are more prominent at low values of Wo. 

The computed results of the time- and space-aver- 
aged Nusselt number, Nu,, indicate that Nu,, of a 
pulsating flow is lower than that of non-pulsating 
flow, when Wo is low. At large Wo, the differences in 



:Vm,, between a pulsating and a non-@sating flow 

diminish. 

.~c~k~o~~l~~~!~c~r?tpll~,s~~Appreci;ttio~~ is extended to the rcfercc 
uhosc constructive comments led to improvements in the 
paper. Thus work m’as supported in part hy rcscarch grant!, 
from the Ministry of Science and Technology. Korea 
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